

M-AERI validation of SLSTR, MODIS, VIIRS, ABI, and Reanalysis SST_{skin}

Peter J Minnett, Malgorzata Szczodrak, & Miguel Angel Izaguirre, Katherine Kilpatrick, Chong Jia & Bingkun Luo*

Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami

*Now at Harvard Smithsonian Astrophysical Observatory, Harvard University

pminnett@rsmas.miami.edu pminnett@earth.miami.edu

Sequence of Presentation

- 1. SLSTR on Sentinel-3a
- 2. MODIS on *Terra* and *Aqua*
- 3. VIIRS on Suomi-NPP
- 4. ABI on *GOES-16*
- 5. ERA5

Sequence of Presentation

1. SLSTR on Sentinel-3a

- 2. MODIS on *Terra* and *Aqua*
- 3. VIIRS on Suomi-NPP
- 4. ABI on *GOES-16*

5. ERA5

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

M-AERI SST_{skin} for Sentinel-3a SLSTR

• No new results for Sentinel 3a SLSTR, no comparisons with Sentinel 3b SLSTR.

Cruises	START	END	Ν	Mean	Med	STD	RMS	RSD
2017 Equinox	20170701	20171231	929	-0.274	-0.059	0.742	0.790	0.473
2017 Allure	20171002	20171126	205	-0.179	-0.023	0.780	0.799	0.313
2018 Equinox	20180111	20180415	532	-0.200	-0.106	0.691	0.719	0.326
2018 Adventure, Leg 1	20180212	20180527	451	-0.116	-0.029	0.529	0.541	0.291
2018 Adventure, Leg2	20180601	20181231	1344	0.038	0.033	0.385	0.386	0.242
2018 RHB	20180307	20181023	921	-0.001	0.044	0.415	0.415	0.275
2019 RHB	20190224	20190329	394	-0.143	-0.050	0.471	0.492	0.326
Total	20170701	20190329	5216	-0.098	-0.008	0.565	0.574	0.296

Luo, B., Minnett, P.J., Szczodrak, M., Kilpatrick, K., & Izaguirre, M. (2020). Validation of Sentinel-3A SLSTR derived Sea-Surface Skin Temperatures with those of the shipborne M-AERI. *Remote Sensing of Environment* 244, 111826. <u>https://doi.org/10.1016/j.rse.2020.111826</u>

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop 8-9 September 2022

Sequence of Presentation

1. SLSTR on Sentinel-3a

- 2. MODIS on *Terra* and *Aqua*
- 3. VIIRS on Suomi-NPP
- 4. ABI on *GOES-16*

5. ERA5

MODIS on Terra and Aqua

- *Terra* was launched on 18 December 1999; *Aqua* was launched on 4 May 2002.
- Both are in nominal operations. In January 2022 *Aqua* orbit began drifting later in the day, expected to exceed 1:45 in February 2023. *Terra* has been drifting to an earlier orbit since 2020, and a "Constellation Exit maneuver" (CEM) in October 2022. MODIS will be shut down Oct 8 Oct 22 (TBC).
- Standard atmospheric correction algorithm is modified NLSST for day and night.
- Night-time algorithm uses measurements at $\lambda = 3.96$ and $4.05 \mu m$.
- Entire missions reprocessed at end of 2019, called R2019. Prior version was R2014 (or C6).
- All SST_{skin} retrievals reprocessed, including R2019 MUDB.

MODIS R2019 Improvements

The major changes in R2019 are:

- a) Replacing the NOAA OI "Reynolds" SSTs, with the CMC as the reference field.
- b) New cloud screening Alternating Decision Trees.¹
- c) Night-time aerosol correction additive term to atmospheric correction algorithm if an aerosol index threshold passed.²
- d) High-Latitude atmospheric correction, for latitude $>60^{\circ}$.³
- e) Improvement to cloud-ice discrimination.
- ¹ Kilpatrick, K.A., Podestá, G., Williams, E., Walsh, S., & Minnett, P.J. (2019). Alternating Decision Trees for Cloud Masking in MODIS and VIIRS NASA Sea Surface Temperature Products. *Journal of Atmospheric and Oceanic Technology 36*, 387-407. DOI: 10.1175/jtech-d-18-0103.1
- ²Luo, B., Minnett, P.J., Gentemann, C., & Szczodrak, G. (2019). Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sensing of Environment 223, 8-20. https://doi.org/10.1016/j.rse.2019.01.009
- ³ Jia, C., & Minnett, P.J. (2020). High Latitude Sea Surface Temperatures Derived from MODIS Infrared Measurements. *Remote Sensing of Environment* 251, 112094. https://doi.org/10.1016/j.rse.2020.112094

MODIS SST_{skin} Comparison with M-AERI

R2019 Residuals MODIS TERRA night LWIR SST_{skin} minus radiometer SST_{skin} .						R2019 SST _{skin}	Residuals (SST4) n	s MODIS ninus radi	TERR iometer	A night · SST _{skin}	MWIR •
Quality	Mean	Median	SD	RSD	Ν	Quality	Mean	Median	SD	RSD	Ν
0	-0.102	-0.061	0.591	0.426	21725	0	-0.098	-0.047	0.449	0.324	22254
1	-0.276	-0.295	0.658	0.475	7353	1	-0.165	-0.129	0.460	0.332	7133

LWIR retrievals use a modified NLSST algorithm applied to clear-sky measurements at $\lambda = 11$ and 12 µm. MWIR retrievals use a modified NLSST algorithm applied to clear-sky measurements at $\lambda = 3.96$ and 4.05 µm

Quality = 0 is best, = 1 is good. $\Delta t \leq 30 \text{ min.} \Delta r \leq 10 \text{ km.}$

Sequence of Presentation

- 1. SLSTR on Sentinel-3a
- 2. MODIS on *Terra* and *Aqua*
- 3. VIIRS on *Suomi-NPP*
- 4. ABI on *GOES-16*5. ERA5

Suomi-NPP VIIRS (NASA algorithms)

- *Suomi-NPP* was launched on 28 October 2011.
- *S-NPP* had an anomalous shut-down on July 26, 2022. Brought back to operations on August 10, with science measurements resumed on August 11. Currently in nominal operations.
- VIIRS has fewer channels than MODIS, missing the SST4 pair.
- NASA VIIRS SST_{skin} atmospheric correction algorithm is comparable to MODIS NLSST.
- NASA night-time only algorithm is SST_{triple} , based on at $\lambda = 3.70$, 10.8 and 12.0 μ m.
- Note, S-NPP SST_{skin} was an orphaned product for three years. New project started earlier this year.
- R2022 reprocessing includes high-latitude coefficients for $> 60^{\circ}N$
- Atmospheric correction coefficients based on a larger data set.

S-NPP SST_{skin} vs M-AERI SST_{skin}

	Quality	Mean	Median	SD	RSD	Ν					
2022.0			SST _{ski}	_n day							
eriod: Jan 2012 – Sept 2021	0	0.043	0.062	0.453	0.327	6959					
	1	-0.180	-0.131	0.604	0.436	5600					
	SST _{skin} night										
$t \le 30 \text{ min.}$	0	-0.002	0.013	0.428	0.309	16928					
$1 \ge 10$ KIII.	1	-0.251	-0.211	0.662	0.448	7909					
	SST _{triple} night										
	0	0.008	0.020	0.316	0.228	12713					
	1	-0.125	-0.097	0.432	0.311	9526					

R

P 2 7

Δ Δ

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Global statistics for VIIRS SST_{skin} retrievals compared to SST_{skin} derived from M-AERI

ISFRN International Workshop

8-9 September 2022

Sequence of Presentation

1. SLSTR on Sentinel-3a

19. 2" ·

- 2. MODIS on *Terra* and *Aqua*
- 3. VIIRS on Suomi-NPP
- 4. ABI on *GOES-16*

5. ERA5

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Advanced Baseline Imager (ABI) on GOES-16

- GOES-16 is above 75.2°W; became operational on 16th December 2017.
- SST_{skin} derived using NOAA ACSPO algorithm, using measurements at $\lambda = 8.4$ µm, 10.3 µm, 11.2 µm, and 12.3 µm.
- Hourly SST_{skin} data from https://podaactools.jpl.nasa.gov /drive/files/allData/ghrsst/ dataGDS2/L2P/GOES16/STAR/ v2.70.
- Matchups with M-AERI within 30 minutes and 5 km.

CRUISES	AREA	START	END	DAYS OF DATA					
2018 Equinox	Caribbean Sea	2018-01-11	2018-09-23	255					
2018 Allure	Caribbean Sea	2018-02-18	2018-10-14	238					
2018 Adventure	Caribbean Sea and US East Coast	2018-02-12	2018-12-31	322					
2019 Adventure	Caribbean Sea and US East Coast	2019-01-01	2019-10-30	302					
2018 RHB	Global	2018-03-07	2018-10-23	230					
2019 RHB PNE	North Atlantic Ocean	2019-02-24	2019-03-29	33					
2019 RHB UNOLS	US East Coast	2019-05-07	2019-05-31	24					
Total		2018-02-12	2019-10-30	625					
RHB: NOAA Ship Ronald H. Brown.									

PNE: PIRATA (Prediction and Research Moored Array in the Tropical Atlantic) -North East extension moorings

UNOLS: University-National Oceanographic Laboratory System

Luo, B., & Minnett, P.J. (2021). Skin Sea Surface Temperatures From the GOES-16 ABI Validated With Those of the Shipborne M-AERI. *IEEE Transactions on Geoscience and Remote Sensing* 59, 9902-9913. 10.1109/TGRS.2021.3054895

ROSENSTIEL SCHOOL of

MARINE, ATMOSPHERIC & EARTH SCIENCE

UNIVERSITY OF MIAMI

ISFRN International Workshop

8-9 September 2022

M-AERI tracks and ABI SST_{skin} comparisons

300 202 304

M-AERI SSTskin

ALL with SSES

ABI – M-AERI SST_{skin} Statistics

CRUISES	Ν	MEAN	MED	STD	RMS	RSD
2018 Equinox	10869	0.036	0.035	0.302	0.304	0.19
2018 Allure	8948	0.035	0.031	0.231	0.233	0.20
2018 Adventure	11840	0.171	0.136	0.394	0.430	0.24
2019 Adventure	10081	0.089	0.081	0.420	0.430	0.26
2018 RHB	1188	0.060	0.069	0.234	0.242	0.19
2019 RHB PNE	1003	0.069	0.101	0.291	0.299	0.16
2019 RHB UNOLS	519	0.174	0.259	0.744	0.764	0.49
Total	44448	0.086	0.072	0.356	0.367	0.22

Luo, B., & Minnett, P.J. (2021). Skin Sea Surface Temperatures From the GOES-16 ABI Validated With Those of the Shipborne M-AERI. *IEEE Transactions on Geoscience and Remote Sensing* 59, 9902-9913. 10.1109/TGRS.2021.3054895

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop 8-9 September 2022

ABI – M-AERI SST_{skin} Dependences

& EARTH SCIENCE

10.1109/TGRS.2021.3054895

ABI – M-AERI SST_{skin} Satellite Zenith Angle Dependence

Luo, B., & Minnett, P.J. (2021). Skin Sea Surface Temperatures From the GOES-16 ABI Validated With Those of the Shipborne M-AERI. *IEEE Transactions on Geoscience and Remote Sensing 59*, 9902-9913. 10.1109/TGRS.2021.3054895

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC

& EARTH SCIENCE

ISFRN International Workshop

8-9 September 2022

Sequence of Presentation

1. SLSTR on Sentinel-3a

age and

- 2. MODIS on *Terra* and *Aqua*
- 3. VIIRS on Suomi-NPP
- 4. ABI on *GOES-16*
- 5. ERA5

UNIVERSITY OF MIAMI

to a

ERA5 Skin SST

- Reanalyses, including MERRA-2, ERA-Interim, and ERA5 include SST_{skin} fields. Here we focus on ERA5.
- The ERA5 SST_{skin} derived by model simulation with data from satellite-derived SSTs, being based on the foundation temperature taken from the OSTIA analysis.
- Spatial resolution: 0.25° x 0.25°. Temporal resolution is 1 hr, but OSTIA is daily. Thus, SST_{skin} is based on a) accuracy of OSTIA, b) a diurnal heating model, and c) a thermal skin layer model.
- ERA5 SST_{skin} accuracy determined by comparisons with M-AERI data. ERA5 fields bi-linearly interpolated to times and positions of the M-AERI measurements.

M-AERI Cruises

RCG CRUISES	AREA	START	END	DAYS OF DATA	R/V CRUISES	AREA	START	END	DAYS O DATA								
2014 ALLURE	Caribbean Sea	2014-08-24	2014-12-31	130	2004 RHB						2004-02-13	2004-04-13	61				
2014 EQUINOX	Caribbean Sea	2014-11-16	2014-12-31	46	2006 RHB		2006-05-27	2006-07-14	49								
2015 ALLURE	Caribbean Sea, North Atlantic Ocean, and Mediterranean Sea	2015-01-01	2015-12-26	360	2007 RHB										2007-05-07	2007-05-28	22
	Caribbean Sea, North				2008 RHB	North Atlantic	2008-04-29	2008-05-19	21								
2016 EQUINOX	Atlantic Ocean, and Mediterranean Sea	2016-01-02	2016-12-31	365	2011 RHB	South Atlantic,	2011-07-21	2011-08-20	31								
2017 EQUINOX	Caribbean Sea	2017-01-01	2017-12-31	365	2013 RHB	Pacific Oceans	2013-11-11	2013-12-08	28								
2017 ALLURE	Caribbean Sea	2017-10-02	2017-11-26	56	2015		2015 11 17	2015 12 14	28								
2018 EQUINOX	Caribbean Sea	2018-01-11	2018-09-23	255	ALLIANCE		2013-11-17	2013-12-14	20								
2018 ADVENTURE	Caribbean Sea and	2018-02-12	2018-12-31	322	2018 RHB		2018-03-07	2018-10-23	231								
2019 ALLUDE	Caribbean Sea	2018 02 18	2018 10 14	238	2019 RHB		2019-02-24	2019-03-29	34								
2018 ALLUKE		2010-02-10	2010-10-14	230	TOTAL		2004-02-13	2019-03-29	505								
2019 ADVENTURE	US East Coast	2019-01-01	2019-10-30	302	RHB: NOAA Ship Ronald H. Brown												
TOTAL		2014-08-24	2019-10-30	2439													

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Spatial Coverage & SST_{skin} Differences

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop 8-9 September 2022

ERA5 Numbers: Big & Small

RCG CRUISES	Ν	MEAN	MED	STD	RMS	RSD	R/V CRUISES	Ν	MEAN	MED	STD	RMS	RSD
2014 ALLURE	9811	-0.196	-0.199	0.262	0.327	0.233	2004 RHB	5805	-0.212	-0.165	0.460	0.507	0.342
2014 EQUINOX	5421	-0.293	-0.288	0.247	0.383	0.219	2006 RHB	3908	-0.152	-0.124	0.383	0.413	0.357
2015 ALLURE	34,658	-0.208	-0.231	0.367	0.422	0.265	2007 RHB	1257	0.024	-0.029	0.441	0.442	0.415
2016 EQUINOX	28,673	-0.188	-0.205	0.371	0.416	0.272	2008 RHB	1592	0.020	-0.012	0.482	0.483	0.366
2017 EOUINOX	41.945	-0.244	-0.238	0.270	0.364	0.211	2011 RHB	2264	-0.038	-0.005	0.327	0.329	0.308
2017 ALLURE	5031	-0.145	-0.133	0.218	0.262	0.206	2013 RHB	7099	-0.201	-0.193	0.230	0.305	0.180
2018 FOUINOX	29 779	-0.266	-0.240	0.291	0.395	0.213	2015 ALLIANCE	5547	-0.299	-0.318	0.242	0.385	0.228
2010 2001101		0.200	0.210	0.271	0.070	0.210	2018 RHB	38,108	-0.167	-0.148	0.282	0.328	0.206
ADVENTURE	7266	-0.170	-0.182	0.480	0.509	0.213	2019 RHB	8378	-0.329	-0.299	0.502	0.601	0.380
2018 ALLURE	27,215	-0.257	-0.252	0.274	0.376	0.238	TOTAL	73,958	-0.190	-0.170	0.348	0.396	0.247
2019 ADVENTURE	28,229	-0.169	-0.218	0.548	0.574	0.272		,					
	210.020	0.000	0.000	0.250	0.400	0.000	CRUISES	Ν	MEAN	MED	STD	RMS	RSD
TOTAL	218,028	-0.220	-0.228	0.358	0.420	0.239	R/V	73,958	-0.190	-0.170	0.348	0.396	0.247
							RCG	218,028	-0.220	-0.228	0.358	0.420	0.239
							TOTAL	291,986	-0.213	-0.214	0.356	0.415	0.243

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Sources of Error: Dust Aerosols

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop 8-9 September 2022

Sources of Error: Air-Sea Temperature Difference

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop 8-9 September 2022

Further details

- For more details, see Luo, B., & Minnett, P.J. (2020). Evaluation of the ERA5 Sea Surface Skin Temperature with Remotely-Sensed Shipborne Marine-Atmospheric Emitted Radiance Interferometer Data. *Remote Sensing* 12, 1873. doi:10.3390/rs12111873
- For ERA-Interim and MERRA-2 results, see Luo, B., Minnett, P.J., Szczodrak, M., Nalli, N.R., & Morris, V.R. (2020). Accuracy Assessment of MERRA-2 and ERA-Interim Sea Surface Temperature, Air Temperature, and Humidity Profiles over the Atlantic Ocean Using AEROSE Measurements. *Journal of Climate* 33, 6889-6909. doi: 10.1175/jcli-d-19-0955.1

Summary

- Target accuracies and decadal stability requirements for SST_{skin} are very demanding... and challenging to verify.
- Comparison with ship-board radiometers provides a primary mechanism for ensuring satellite SST_{skin} retrievals have an SI-traceable reference.
- SI-traceability permits the generation of SST_{skin} Climate Data Records.
- SLSTR, MODIS, VIIRS, and ABI are producing very good SST_{skin} .
- ERA5 SST_{skin} is good, but room for improvement through better modelling of aerosol effects, diurnal heating and skin layer.

Current Priorities

- Monitor Terra and Aqua MODISs for effects of orbital drift.
- Come back up to speed with S-NPP VIIRS.
- Optimize cloud-screening algorithm for NOAA-20 VIIRSGenerate atmospheric correction algorithm coefficients for NOAA-20 VIIRS (launched November 18, 2017).
- Develop Saharan Dust correction for S-NPP and NOAA-20 VIIRS.
- Generate MatchUps between 2019 Saildrone SST_{skin} with MODIS and VIIRS retrievals.
- Improve high-latitude retrievals for MODIS and VIIRS.
- Explore Machine Learning approaches to the atmospheric correction.

Relevant Publications

- Kilpatrick, K.A., Podestá, G., Williams, E., Walsh, S., & Minnett, P.J. (2019). Alternating Decision Trees for Cloud Masking in MODIS and VIIRS NASA Sea Surface Temperature Products. *Journal of Atmospheric and Oceanic Technology* 36, 387-407. DOI: 10.1175/jtech-d-18-0103.1
- 2. Luo, B., Minnett, P.J., Gentemann, C., & Szczodrak, G. (2019). Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. *Remote Sensing of Environment* 223, 8-20. https://doi.org/10.1016/j.rse.2019.01.009
- 1. Jia, C., & Minnett, P.J. (2020). High Latitude Sea Surface Temperatures Derived from MODIS Infrared Measurements. *Remote Sensing of Environment* 251, 112094. https://doi.org/10.1016/j.rse.2020.112094
- Luo, B., Minnett, P.J., Szczodrak, M., Kilpatrick, K., & Izaguirre, M. (2020). Validation of Sentinel-3A SLSTR derived Sea-Surface Skin Temperatures with those of the shipborne M-AERI. *Remote Sensing of Environment 244*, 111826. <u>https://doi.org/10.1016/j.rse.2020.111826</u>
- Minnett, P.J., Kilpatrick, K.A., Podestá, G.P., Evans, R.H., Szczodrak, M.D., Izaguirre, M.A., Williams, E.J., Walsh, S., Reynolds, R.M., Bailey, S.W., Armstrong, E.M., & Vazquez-Cuervo, J. (2020) <u>Skin Sea-Surface Temperature from VIIRS on Suomi-NPP</u> <u>NASA Continuity Retrievals</u>. *Remote Sensing* 12, 3369. doi:10.3390/rs12203369
- 4. Luo, B., & Minnett, P.J. (2020) Evaluation of the ERA5 Sea Surface Skin Temperature with Remotely-Sensed Shipborne Marine-Atmospheric Emitted Radiance Interferometer Data. *Remote Sensing* 12, 1873. doi:10.3390/rs12111873
- 5. Luo, B., & Minnett, P.J. (2020) Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with those of Geostationary Imagers. *Remote Sensing* 12, 3279. doi:10.3390/rs12203279

Relevant Publications II

- 6. Luo, B., Minnett, P.J., & Nalli, N.R. (2021) <u>Infrared satellite-derived sea surface skin temperature sensitivity to aerosol vertical</u> <u>distribution–Field data analysis and model simulations.</u> *Remote Sensing of Environment* 252, 112151. https://doi.org/10.1016/j.rse.2020.112151
- 7. Kumar, C., Podestá, G., Kilpatrick, K. & Minnett, P. (2021]. A machine learning approach to estimating the error in satellite sea surface temperature retrievals. *Remote Sensing of Environment*, <u>https://doi.org/10.1016/j.rse.2020.112227</u>
- 8. Luo, B., & Minnett, P.J (2021). <u>Skin Sea Surface Temperatures From the GOES-16 ABI Validated With Those of the Shipborne</u> <u>M-AERI</u>. *IEEE Transactions on Geoscience and Remote Sensing*, 59(12), 9902-9913. 10.1109/TGRS.2021.3054895
- 9. Luo, B., Minnett, P.J., Zuidema, P., Nalli, N.R., & Akella, S. (2021). <u>Saharan Dust Effects on North Atlantic Sea-Surface Skin</u> <u>Temperatures.</u> *Journal of Geophysical Research: Oceans* 126, e2021JC017282. https://doi.org/10.1029/2021JC017282
- 10. Luo, B., Minnett, P.J., Szczodrak, M., & Akella, S. (2022). <u>Regional and Seasonal Variability of the Oceanic Thermal Skin</u> <u>Effect</u>. Journal of Geophysical Research: Oceans 127, e2022JC018465. <u>https://doi.org/10.1029/2022JC018465</u>
- 11. Minnett, P.J., Knuteson, R.O., & Gero, J. (2022). Surface-based thermal infrared spectrometers. In N.R. Nalli (Ed.), Field Measurements for Passive Environmental Remote Sensing. To be published October 2022: Elsevier.
- 12. Jia, C., Minnett, P.J., Szczodrak, M., & Izaguirre, M.A. (2022). High Latitude Sea Surface Skin Temperatures Derived From Saildrone Infrared Measurements. *IEEE Transactions on Geoscience and Remote Sensing (in revision)*.
- 13. Jia, C., Minnett, P.J.. and Luo B. (2022), Significant Diurnal Warming Events Observed by Saildrone at High Latitudes. In preparation.

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Acknowledgements.

- NASA Physical Oceanography Program.
- NASA Participating Investigators Program.
- NASA Senior Review Support.
- NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) Program Bingkun Luo.
- University of Miami Graduate School Fellowship Chong Jia.
- Royal Caribbean Group.
- Officers and crew of the NOAA Ship Ronald H. Brown.

Thank you for your attention.

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop 8-9 September 2022

Outstanding issues

- Better cloud screening and atmospheric correction algorithms.
- Assess sampling errors in ship radiometer measurements, (also for drifting buoy data).
- The SSES (Sensor Specific Error Statistics) for each SST_{skin} product should be revisited see Kumar, C., Podestá, G., Kilpatrick, K. & Minnett, P. 2021. A machine learning approach to estimating the error in satellite sea surface temperature retrievals. *Remote Sensing of Environment*, https://doi.org/10.1016/j.rse.2020.112227.
- Improved understanding of thermal skin effect is needed.
- And much more....

S-NPP SST_{skin} vs M-AERI SST_{skin}

Quality	Mean	Median	SD	RSD	Ν						
SST _{skin} day											
0	0.077	0.066	0.260	0.193	7380						
1	-0.035	-0.020	0.427	0.316	5878						
SST _{skin} night											
0	0.029	0.043	0.411	0.305	10074						
1	-0.205	-0.192	0.643	0.477	4906						
SST _{triple} night											
0	0.053	0.090	0.468	0.347	4359						
1	-0.162	-0.117	0.633	0.470	3792						

UNIVERSITY OF MIAMI

& EARTH SCIENCE

MARINE, ATMOSPHERIC

Global statistics for VIIRS SST_{skin} retrievals compared to SST_{skin} derived from M-AERIs. ROSENSTIEL SCHOOL of

ISFRN International Workshop

8-9 September 2022